Synthesis of a trans-acting inhibitor of DNA maturation by prohead mutants of phage lambda.

نویسندگان

  • H Murialdo
  • W L Fife
چکیده

Bacteriophage lambda with mutations in genes that control prohead assembly and other head precursors cannot mature their DNA. In this paper we present evidence that the failure of these phage mutants to mature DNA is a reflection of a mechanism that modulates terminase nicking activity during normal phage development. We have constructed plasmids that contain the lambda-cohesive end site (cos) and the genes that code for DNA terminase, the enzyme that matures DNA by cutting at cos. The DNA terminase genes are under control of a thermosensitive cI repressor. These plasmids lack most of the genes involved in prohead morphogenesis and other head precursors. However, when repression is lifted by destruction of the thermosensitive repressor, the terminase synthesized is able to cut almost 100% of the plasmids. Therefore, these plasmids can mature in the absence of proheads and other head gene products. The plasmids are also able to complement mutants of lambda deficient in terminase and DNA maturation. However, in these complementation experiments, if the phage carry mutations in prohead genes E or B, not only is phage DNA maturation blocked, but the plasmid also fails to mature. These experiments show that, in the absence of proheads, phage lambda produces a trans-acting inhibitor of maturation. The genetic determinant of this inhibitor maps in a region extending from the middle of gene B to the end of gene C. A model is proposed in which the nicking activity of DNA-bound terminase is inhibited by the trans-acting inhibitor. Prohead (and other factors) binding to this complex would release the block to allow DNA cleavage and packaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To Be or Not To Be T4: Evidence of a Complex Evolutionary Pathway of Head Structure and Assembly in Giant Salmonella Virus SPN3US

Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolu...

متن کامل

Domains for protein-protein interactions at the N and C termini of the large subunit of bacteriophage lambda terminase.

The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA cont...

متن کامل

A phi 80 function inhibitory for growth of lambdoid phage in him mutants of Escherichia coli deficient in integration host factor. I. Genetic analysis of the Rha phenotype.

Bacteriophage phi 80 and lambda-phi 80 hybrid phage of the type lambda (QSR)80, in which the rightmost 10% of the lambda genome is replaced by corresponding phi 80 material, are unable to grow lytically in himA and hip/himD mutants of Escherichia coli K12 at 32 degrees. The genetic element responsible for the growth defect, rha, has been mapped to the (QSR)80 region and was located more precise...

متن کامل

Assembly of biologically active proheads of bacteriophage lambda in vitro.

Bacteriophage lambda DNA can be packaged in vitro into preformed proheads to generate plaque-forming units. This complex set of reactions is initiated when lambda DNA is mixed with the product of the phage A gene, and proheads. Because proheads are an essential early reactant, the system has potential as an assay for the formation of biologically active proheads. When extracts of cells infected...

متن کامل

Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages.

Most of the known prohead maturation proteases in double-stranded-DNA bacteriophages are shown, by computational methods, to fall into two evolutionarily independent clans of serine proteases, herpesvirus assemblin-like and ClpP-like. Phylogenetic analysis suggests that these two types of phage prohead protease genes displaced each other multiple times while preserving their exact location with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 1987